Sleep and fatigue among officers on board gas tankers

Elianne F.E.R. Rongen1,2, Audrey E.W.G. Rost-Ernst1,4, Remko Kloos3, Wessel M.A. van Leeuwen1

1Netherlands Maritime University, Rotterdam, The Netherlands; 2STC Group, Rotterdam, The Netherlands; 3Anthony Veder Group, Rotterdam, The Netherlands; 4Stress Research Institute, Stockholm University, Stockholm, Sweden

Introduction
Fatigue is a growing safety concern in the maritime industry. Especially on board gas tankers, safety is of crucial importance. Therefore, this field study investigates sleep and sleepiness on board routinely operating gas tankers.

Results
Sleepiness peaked around 4 AM in both shift workers (KSS=5.5) and day workers (KSS=6.2) and correlated well with model predictions (average r=.60, p<.001). Average sleep efficiency was 88% - with no difference between shift workers and day workers. Daily sleep duration was shortest in those working 00-04 (8 h), and longest in those working 00-04 (8 h). Day workers slept about 6.5 hours/day. Errors on the SART were most frequent at night and were 35% more frequent at the end of a working period compared to the beginning.

Conclusion
Highest sleepiness is reached in line with model predictions (i.e. around 4 AM). Although no sleep on duty was observed, the fact that neurobehavioural performance declined with time at work may be of risk.

Method
22 officers working on 2 gas tankers (see photos) from a Dutch shipping company participated on a 10-day voyage through European waters, working either day work (n=16) or on 4h on/8h off watch system (n=6). Sleepiness (Karolinska Sleepiness Scale, KSS) was rated hourly, neurobehavioural performance (Sustained Attention to Response Task, SART) at the start and end of each work period. Sleep and sleep quality was assessed using actigraphy and diaries. Sleepiness ratings were also correlated to predictions based on the three-process model of alertness regulation.